مركز البحوث
  1. Literature Review

This comparative analysis confirms the dominance of hybrid AI models (LSTM/GRU ensembles with metaheuristic optimizers) in achieving ultra-low error rates (MAPE 0.06–2%) across forecasting and scheduling tasks. Critical innovations include weather-resilient algorithms, real-time dispatch logic, and wastage reduction architectures

Table1: Summary of Related Works on AI-Based Electricity Load Forecasting and Scheduling

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *